فضاهای متریک تابع مقدار
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم ریاضی
- author سجاد احراری
- adviser مجید میرزاوزیری محمد صال مصلحیان
- Number of pages: First 15 pages
- publication year 1391
abstract
در این پایان نامه ابتدا مفهومی ازf-متریک به عنوان نگاشتی با فاصله تابع مقدار، روی مجموعه x معرفی می شود و نظریه فضاهای $f$-متریک بررسی میشود. نشان می دهیم که هر فضای متریک می تواند به عنوان یک فضای f-متریک تلقی شود و هر فضای f-متریک می تواند به عنوان یک فضای توپولوژیک در نظر گرفته شود. علاوه بر این نشان می دهیم که رسته ی موسوم به گسترش یافته فضاهای -fمتریک، شامل رسته ی فضاهای متریک است. در ادامه یک فضای fمتریک را معرفی می کنیم که به عنوان مکمل فضای -fمتریک است. به عنوان کاربردی در توپولوژی نشان می دهیم که هر فضای توپولوژیک نرمالf-متریک پذیر است.
similar resources
تعمیم قضیه نقطه ثابت کاریستی برای فضاهای متریک برداری مقدار
قضیه نقطه ثابت کاریستی در سال 1975 توسط کاریستی به عنوان تعمیم قضیه انقباضی باناخ عنوان گردیده شد و در سال 2088 توسط کاراپینار و عبدالجواد روی فضای متریک مخروطی و در سال 2011 توسط خمسی و آگاروال روی فضای متریک برداری مقدار تعمیم داده شده است.
15 صفحه اولعملگرهای ترکیبی فشرد? فضاهای باناخ توابع اسکالر- مقدار کراندار لیپشیتس بر فضاهای متریک نافشرده
در این پایان نامه با فرض این که (x,d)یک فضای متریک نافشرده است، ابتدا به معرفی جبرهای لیپشیتس lip(x,d^{alpha})، جبرهای کوچک لیپشیتس lip(x,d^{alpha}) و جبرهای برجست? لیپشیتس lip_{0}(x,d^{alpha}) برای 0<alpha leq 1 می پردازیم و برخی از خواص اساسی آن ها را بیان می کنیم. سپس برخی از قضایای مربوط به فضای متریک r-همبند را بیان می کنیم. در ادامه برخی از ویژگی های فضاهای توابع لیپشیت...
15 صفحه اولفضاهای متریک مخروطی و تفاوت آنها با فضاهای متریک معمولی
بعد از معرفی فضاهای متریک مخروطی، دیدگاه های متفاوتی در خصوص این که آیا این فضاها تعمیمی واقعی از فضاهای متریک معمولی هستند یا خیر مطرح شده است. در این خصوص در مقالات متعددی به صورت پراکنده قضایایی از قبیل متریک پذیری یا معادل بودن این فضاها با فضاهای متریک معمولی مطرح شده است. در مقابل نیز برخی مقالات، با ارائه قضایا و مثال هایی سعی در نشان دادن تفاوت های ذاتی فضاهای متریک مخروطی با فضاهای متر...
خواص تابع مقدار ویژه
خواص تابع مقدار ویژه برای ماتریسها را مورد مطالعه قرار دادهایم و یک تعداد از خواص آن را جمعآوری کردهایم. نشان میدهیم که این تابع پیوسته، اکیدا پیوسته، دیفرانسیل پذیر سویی، دیفرانسیل پذیر فرشه و بهطور دیفرانسیل پذیر پیوسته میباشد. در مرحله بعد تابع مقدار ویژه را به یک مجموعه بزرگتر از ماتریسها تعمیم داده و نشان خواهیم داد که خواص مذکور مجددا برقرار است.
full textفضاهای متریک مرتبط
در این پایان نامه به مطالعه ساختارهای مرتبط پرداخته و با در نظر گرفتن تانسور ?-موازی h، روی منیفلد مرتبط متریک، نشان می دهیم این منیفلدها یا k-مرتبط بوده و یا (k,?)-فضا می باشند. به ویژه ثابت خواهیم کرد که cr-ساختار وابسته انتگرال پذیر است. در ادامه منیفلدهای مرتبط را همراه با یک متریک شبه ریمانی وابسته و با تأکید بر شباهت ها و تفاوت هایش با حالت ریمانی، تحت یک مطالعه اصولی، معرفی خواهیم نمود.
15 صفحه اولقضایای نقطه ثابت برای انقباض های مجموعه مقدار در فضاهای متریک کامل
هدف بررسی قضایای نقطه ثابت برای نگاشت های مجموعه مقدار براساس تعاریف انقباضی، و موضعا انقباضی است. در این پایان نامه به بررسی چهار زاویه مختلف نگاه به تعمیم موضعا انقباضی بودن برای یک نگاشت مجموعه مقدار و شرایطی که تحت آن به نقطه ثابت می رسیم پرداخته ایم.
15 صفحه اولMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم ریاضی
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023